Dot Matrix

2,000Ks

                                                            

These can be very useful displays. To control a matrix, you connect both its rows and columns to your microcontroller. The columns are connected to the LEDs cathodes (see Figure 1), so a column needs to be LOW for any of the LEDs in that column to turn on. The rows are connected to the LEDs anodes, so the row needs to be HIGH for an individual LED to turn on. If the row and the column are both high or both low, no voltage flows through the LED and it doesn’t turn on.

To control an individual LED, you set its column LOW and its row HIGH. To control multiple LEDs in a row, you set the row HIGH, then take the column high, then set the columns LOW or HIGH as appropriate; a LOW column will turn the corresponding LED ON, and a HIGH column will turn it off.

Tip - Pins set to OUTPUT by use of the PinMode command are set to LOW if not otherwise stated

Although there are pre-made LED matrices, you can also make your own matrix from 64 LEDs, using the schematic as shown above.

It doesn’t matter which pins of the microcontroller you connect the rows and columns to, because you can assign things in software. Connected the pins in a way that makes wiring easiest. A typical layout is shown below.

Here's a matrix of the pin connections, based on the diagram above:

Matrix pin no. Row Column Arduino pin number
1 5 - 13
2 7 - 12
3 - 2 11
4 - 3 10
5 8 - 16 (analog pin 2)
6 - 5 17 (analog pin 3)
7 6 - 18 (analog pin 4)
8 3 - 19 (analog pin 5)
9 1 - 2
10 - 4 3
11 - 6 4
12 4 - 5
13 - 1 6
14 2 - 7
15 - 7 8
16 - 8 9